کمیت: 0

مجموع: 0,00

0

# Volume and surface area (exercise)

### Volume and surface area (exercise)

An exercise about the volume and surface area of solids generated from a ´base cube´.

رياضى

کلیدواژه‌ها

cube, volume, surface, exercise

موارد مربوط

### موارد مربوط

#### Cube

This animation demonstrates the components (vertices, edges, diagonals and faces) of the cube, one of the Platonic solids.

#### Cube puzzle

Building cubes shown in several views from the available unit cubes aids spatial vision and other skills.

#### محیط، مساحت، سطح و حجم

این انیمیشن فرمول های محاسبه محیط و مساحت شکل ها و همچنین مساحت و حجم احجام هندسی را نمایش می دهد۔

#### تمرین شبکه مکعب مستطیل

این انیمیشن شبکه های مختلف یک مکعب را نشان می دهد و شامل یک بازی است۔

#### توابع مهم

نمایش جذابی از عبارات جبری۔

#### تمرین شبکه مکعب

همه شبکه های دارای 6 مربع یکسان تمی توانند مکعب ایجاد کنند۔

#### Building shapes (one colour)

Build 3D shapes from unit cubes with the help of several views.

#### Cube (exercises)

Edges, diagonals and faces of a cube can be identified by its vertices.

#### Cube sections (exercise)

Examining solids formed by the intersection of a cube and a plane.

#### Cuboid

A cuboid is a polyhedron with six rectangular faces.

#### Ratio of volumes of similar solids

This 3D scene explains the correlation between the ratio of similarity and the ratio of volume of geometric solids.

#### Volume of spheres (Cavalieri´s principle)

Calculating the volume of a sphere is possible using an appropriate cylinder and cone.

#### Volume of spheres (demonstration)

The sum of the volume of the ´tetrahedrons´ gives an approximation of the volume of the sphere.

#### Colouring a cube

Colouring the vertices, edges and faces of a given cube according to the criteria specified in the exercise.

#### Cube of cubes

An exercise about the regular hexahedron built from unit cubes to help deepen your knowledge of cubes.

#### Grouping of cuboids

This animation demonstrates various types of cuboids through everyday objects.

#### Non-orientable surfaces

The Möbius strip and the Klein bottle are special two-dimensional surfaces with only one side.